## エクセルで新型コロナウイルス感染のシミレーション

令和2年、世界中に大感染を起こした新型コロナを、ウサギのつがいの増殖モデルを参考にしながら、 エクセルを利用してシミュレートします。

1. ネズミ算とウサギ算

- (1)「ネズミ算」・・・ 江戸時代(1630)発行の和算書に記載された、ネズミの増え方を示す考え方で 次のような内容です。
- 正月に1つがいのネズミが現れ6つがいの子ネズミを生んで計7つがいになる。
- 2月には7つがいのネズミが各々6つがいの子ネズミを生むので計49つがいになる。
- 3月になると49つがいのネズミが各々6つがいの子ネズミを産むので計343つがいになる。
- (2)「ウサギ算」・・・ 12世紀のイタリア人・フェボナッチが
- ウサギをモデルに考えた、次のような増殖の仕方です。
- \*1つがいの子ウサギは1ケ月かけて親ウサギになり、

2ケ月目から毎月1つがいのウサギを産む。

- \*1→1→2→3→5→8→11→19 ・・・ と続くつがい数の変化は 正式にはフェボナッチ数列と呼ばれています。
- \*前の2つの数を加算するとその次の数が得られます(例 8+11=19)。
- (3) エクセルによる計算 ・・・ ネズミ算(7倍、2倍)とウサギ算は簡単に計算できます。

|    | A                  | В        | С          | D          |  |
|----|--------------------|----------|------------|------------|--|
| 1  | ネズミ算               | ネズミ算     | ウサギ算       | コロナ算       |  |
| 2  | (7倍の 場合)           | (2倍の 場合) | (フェボナッチ数列) | (変則フェボナッチ) |  |
| З  | 1                  | 1        | 1          | 1          |  |
| 4  | 7                  | 2        | 1          | 1          |  |
| 5  | 49                 | 4        | 2          | 2          |  |
| 6  | 343                | 8        | 3          | 3          |  |
| 7  | 2,401              | 16       | 5          | 5          |  |
| 8  | 16,807             | 32       | 8          |            |  |
| 9  | 117,649            | 64       | 13         | 全て数値 / 11  |  |
| 10 | 823,543            | 128      | 21         | を入力 18     |  |
| 11 | 5,764,801          | 256      | 34         | 27         |  |
| 12 | 40,353,607         | 512      | 55         | 42         |  |
| 13 | 282,475,249        | 1,024    | 89         | 64         |  |
| 14 | 1,977,326,743      | 2,048    | 144        | 98         |  |
| 15 | 13,841,287,201     | 4,096    | 233        | 151        |  |
| 16 | 96,889,010,407     | 8,192    | 377        | 231        |  |
| 17 | 678,223,072,849    | 16,384   | 610        | 355        |  |
| 18 | 4,747,561,509,943  | 32,768   | 987        | 544        |  |
| 19 | 33,232,930,569,601 | 65,536   | 1597       | 835        |  |
|    |                    | Ν        |            |            |  |

① セル「A3」に半角数字で「1」を入力。 ② セル「A4」に式(=A3\*7)を入力。 (注)A3の個所はキー入力の代わりに セル「A3 」をクリックしてもOK。 ③ セル「A5」以下はセル「A4」をコピーし 貼り付ける。セル「A4」の右下部 をドラッグしてもOK。

① セル「B3」に「1」を入力。 ② セル「B4」に式(=B3\*2) を入力。 ③ セル「**B5**」以下はセル 「B4」をコピーし貼り付け。  1) セル「C3」「C4」に「1」を 入力。 セル「C5 」に式(=C3+C4) を入力。 ③ *セ*ル「**C6**」以下は*セ*ル「**C5**」 をコピーし貼り付け。



「エクセルで新型コロナウイルス感染のシミュレーション ] - 1 / 4 -



新型コロナウイルスの感染モデル(変則フェボナッチ・コロナ算)
 新型コロナによる感染モデルは、単純なウイルス増殖だけの問題ではなく、人の体内でのウイルスの寿命、人から人への感染力、発症状況などいろいろな情報を考慮する必要があります。
 新型コロナに感染してもすぐには発症しないこと。また発症した場合に、およそ2週間で平癒することなどから、コロナの寿命が有限とし、次のようにステージ分けをしたモデルを設定します。

| ステージ | 1   | 2  | 3  | 4  | 5  | 6  | 7  |                      |
|------|-----|----|----|----|----|----|----|----------------------|
| 記号   | Δ   | 0  | •  | •  |    | •  | ×  | 各ステージ期間              |
| 説明   | 感染初 | 増殖 | 発症 | 発症 | 発症 | 発症 | 平癒 | を3日に設定。<br>3×4=12日間発 |
| 感染力  | 無し  | 無し | 有り | 有り | 有り | 有り | 無し | 症している計算。             |
| PCR  | 陰性  | 陽性 | 陽性 | 陽性 | 陽性 | 陽性 | 陰性 |                      |



[エクセルで新型コロナウイルス感染のシミュレーション] - 2/4-

3. 感染係数を考慮して新型コロナウイルスの感染シミュレーション

(1)シミュレーション用に感染モデルの修正

前記の感染モデルは、発症前の状態や、発症、平癒などの分離ができる点で好都合ですが、 感染の広がり具合を調整するものが欠けているため、次のように修正します。

- \*「感染係数 p」を導入して計算する。
- \*「感染係数 p」は、時点毎に異なった数値を与えることができる。
- \* 発症後約2週間で平癒することから感染モデルのステージは3日に設定。

具体的な作成作業の説明は省きますが、エクセルを活用するには適したテーマです。

(2)エクセルによる新型コロナ感染シミュレーターのダウンロード

「パソコン教室テキストー覧」のホームページ、No.426 より、シミュレーターをダウンロードします。



入力によってシミュレーションを行うことになります。感染係数が大きいほど感染が激しくなります。 国内の9月までの感染では上図のように感染係数値が p=0.1~1.0 となっていますが、8月中旬以降 上向きに推移していて、心配なところです。

[エクセルで新型コロナウイルス感染のシミュレーション] - 3/4-

(3)シミュレーターによる過去データの見直しと、今後のコロナ感染見通しの検討
 3月~6月の第1波の場合は、厳しい外出制限を行って何とか切り抜けることができましたが、
 今後の参考用に次のようなシミュレーションを行ってみましょう。

① 非常事態宣言が十分徹底して、感染係数が更に1/2となった場合。

具体的には、セル「C31」~セル「C39」の感染係数を0.1→0.05に変更してグラフをチェックします。



グラフチェック後は、感染係数の変更箇所を元に戻します。

- ② 非常事態宣言が十分徹底せず、感染係数があまり下がらなかった場合。 具体的には、セル「C30」~セル「C40」の感染係数を0.1→0.15に変更してグラフをチェックします。 グラフチェック後は、感染係数の変更箇所を元に戻します。
- ③ 非常事態宣言解除をあと9日間(シミュレータで3行分)延長した場合。 具体的には、宣言解除後のp変化を同じようにするため、セル「C38」~セル「C48」の感染係数を コピーしセル「C41」に貼り付けします。グラフチェック後は、感染係数変更箇所を元に戻します。
- ④ 10月以降の感染対策が設定値よりも甘くなった場合。
  具体的には、セル「C83」~セル「C112」の感染係数を 0.23→0.3 に変更する。
  グラフチェック後は、感染係数の変更箇所を元に戻します。
- ⑤ 10月以降の感染対策が設定値よりも改善された場合。 具体的には、セル「C83」~セル「C112」の感染係数を 0.23→0.2 に変更する。 グラフチェック後は、感染係数の変更箇所を元に戻します。
- (注1) 今回は新規感染者についてチェックしましたが、無症状でかつPCR検査でも陰性の △印者(初期感染者)、および PCR検査には陽性となるものの発症前の人(〇印者)に 注目した検討も重要です。
- (注2) ×印は、軽症者ではこの時点で平癒となるものの、重症に移行する場合もあるので むしろ、×印は軽症者の退院、重症移行者、死者も含んだ人数と見なすことができます。

## [エクセルで新型コロナウイルス感染のシミュレーション] - 4 / 4 -